VO: enabling science

Mark Allen - CoSADIE Project Scientist
Vision

• Archives and databases form a ‘digital sky’
• New possibilities via data discovery, efficient data access and interoperability

Driven by:

• Exploding data rates
• Multi-λ, time-domain & survey science
• Astronomers demand/expectation of interoperability
Motivation: To enable science

via:

• Data discovery
• Efficient data access
• Interoperable analysis tools
• Interoperable data
• Scalable visualisation and computing
• Data Mining
Status - early operations

• Core standards established
• Tools and services operational
• Tool interoperability proven very useful
• Being used for science in many different ways
• Offers unique capabilities
On the hype-curve? :-)

![Hype Cycle Diagram](image_url)

- **Time**: Plateau will be reached in:
 - 0 less than 2 years
 - 2 to 5 years
 - 5 to 10 years
 - more than 10 years
 - obsolete before plateau

- **Technology Trigger**
- **Peak of Inflated Expectations**
- **Trough of Disillusionment**
- **Slope of Enlightenment**
- **Plateau of Productivity**

- **expectations**
 - Wireless Power
 - Hybrid Cloud Computing
 - HTML5
 - Gamification
 - Big Data
 - Crowdsourcing
 - Speech-to-Speech Translation
 - Silicon Anode Batteries
 - Natural-Language Question Answering
 - Internet of Things
 - Mobile Robots
 - Autonomous Vehicles
 - 3D Scanners
 - Automatic Content Recognition
 - Volumetric and Holographic Displays
 - 3D Bioprinting
 - Quantum Computing
 - Human Augmentation

- **3D Printing**
- **BYOD**
- **Complex-Event Processing**
- **Social Analytics**
- **Private Cloud Computing**
- **Application Stores**
- **Augmented Reality**
- **In-Memory Database Management Systems**
- **Activity Streams**
- **NFC Payment**
- **Audio Mining/Speech Analytics**
- **Cloud Computing**
- **Machine-to-Machine Communication Services**
- **Mesh Networks/Sensor**
- **Gesture Control**
- **Predictive Analytics**
- **Speech Recognition**
- **Consumer Telematics**
- **Idea Management**
- **Biometric Authentication Methods**
- **Consumeration**
- **Media Tablets**
- **Mobile OTA Payments**

As of July 2012
VO enabled tools

• Healthy variety of approaches
• Range of VO-enabled exiting tools to VO dedicated tools
• Co-operation between tools - lets tools concentrate on strengths
• Not an ‘all in one’ package
Finding data with Aladin:

- A service can be **found** and **used** by tools that access the registry.

Metadata describes data properties e.g. FoV

Images

Catalogues

Spectra
Table Access Tools

Topcat

TAPHandle

TAP Parameters

TAP URL:
Like CasJobs ... but not just SDSS
ADQL/SQL query of tables via TOPCAT

Some services offer joins between tables and uploaded tables.
Spectral Tools
VOSA

VO SED Analyzer

- Builds an SED with photometry gathered from different VO services and compare them with different grids of models to obtain physical parameters (Teff, masses, ages, ...)

![Diagram](image.png)
Programmatic approaches

- Direct programming to access services
- Scripting languages in tools - allow transition from interactive to automated approach
- Python increasingly important
Interoperability

Aladin

Topcat

Your programs

VOSpec
<table>
<thead>
<tr>
<th>Application / Version (in alphabetical order)</th>
<th>Functionality</th>
<th>Other VO-compliant tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aladin v7.015a (March 2011)</td>
<td>Search for Images: Aladin, Datascope, SkyView, VODesktop</td>
<td>DS9: Image visualisation</td>
</tr>
<tr>
<td>Datascope v3.3 (April 2010)</td>
<td>Search for Spectra: Aladin, Datascope, SPLAT, Specview, VOServices, VOSpec</td>
<td>GOSSIP: SED fitting</td>
</tr>
<tr>
<td>Montage</td>
<td>Search for Catalogues: Aladin, Datascope, TOPCAT, VODesktop</td>
<td>Mirage: Table visualisation</td>
</tr>
<tr>
<td>Octet</td>
<td>Image visualisation: Aladin, SkyView</td>
<td>VirGO: Search for Images and Spectra</td>
</tr>
<tr>
<td>Open SkyQuery</td>
<td>Spectra visualisation: SPLAT, Specview, VOServices, VOSpec</td>
<td></td>
</tr>
<tr>
<td>SkyView</td>
<td>Catalogues visualisation: Aladin, TOPCAT, VOPlot</td>
<td></td>
</tr>
<tr>
<td>Specview 2.15 (August 2011)</td>
<td>Cross-correlation: Aladin, Open SkyQuery, STILTS, TOPCAT</td>
<td></td>
</tr>
<tr>
<td>SPLAT 3.9.0 (May 2009)</td>
<td>Scatter, 3D plots and histograms: TOPCAT, VOPlot</td>
<td></td>
</tr>
<tr>
<td>TOPCAT/STILTS 3.9/2.4 (October 2011)</td>
<td>Statistics: VOSStat</td>
<td></td>
</tr>
<tr>
<td>VisIVO 1.5.7.1 (May 2009)</td>
<td>Footprint Service: Aladin, VOServices</td>
<td></td>
</tr>
<tr>
<td>VOConvert 1.0 (June 2006)</td>
<td>Table format conversion: TOPCAT, VOConvert</td>
<td></td>
</tr>
<tr>
<td>VODESKTOP 1.3.2 (February 2010)</td>
<td>Filter curves: VOServices</td>
<td></td>
</tr>
<tr>
<td>VOEventNet</td>
<td>SED building: VOSA, VOSED, VOSpec</td>
<td></td>
</tr>
<tr>
<td>VOPLOT 1.7 (September 2011)</td>
<td>Fixing WCS: Aladin, WCSFixer</td>
<td></td>
</tr>
<tr>
<td>VOStat 1.1 (November 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOSA 2.2.0 (March 2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOSED 2.0 (May 2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOServices (Footprint, Spectrum, Filters...)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Browse the Registries

- EURO-VO Registry
- NVO Registry
- use VODESKTOP

Manuals, Tutorials, How-tos

- Aladin User manual
- Datascope how to
- Montage help
- Open SkyQuery help
- SkyView documentation
- Specview examples
- SPLAT documentation
- STILTS documentation
- TOPCAT documentation
- VisIVO how to
- VODESKTOP how to
- VOSpec User manual
Published examples

Refereed Publications

The Hopkins Ultraviolet Telescope: The Final Archive
Dixon, William V.; Blair, William P.; Kruk, Jeffrey W.; Romelfanger, Mary L

Proper motions of young stars in Chamaeleon. I. A Virtual Observatory study of spectroscopically confirmed members
Lopez Martí, B.; Jimenez Esteban, F.; Bayo, A.; Barrado, D.; Solano, E.; Rodrigo, C.
A&A 2013, 551, 46L

Automated rapid follow-up of Swift gamma-ray burst alerts at 15 GHz with the AMI Large Array
Staley, T. D.; Titterington, D. J.; Fender, R. P.; Swinbank, J. D.; van der Horst, A. J.; Rowlinson, A.; Scaife, A. M. M.; Grainge, K. J. B.; Pooley, G. G.

Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory
E. Solano, C. Rodrigo, R. Pulido, B. Carry
Accepted in Astron. Nachr

The Millennium Run Observatory: first light
Overzier, R.; Lemson, G.; Angulo, R. E.; Bertin, E.; Blaizot, J.; Henriques, B. M. B.; Marleau, G.-D.; White, S. D. M.

Query driven visualization of astronomical catalogs
Buddelmeijer, Hugo; Valentijn, Edwin A.
Experimental Astronomy, Volume 35, Issue 1-2, pp. 283-300

A Virtual Observatory Census to Address Dwarfs Origins, AVOCADO - I. Science goals, sample selection
Proper motions of young stars in Chamaeleon

I. A Virtual Observatory study of spectroscopically confirmed members

B. Lopez Martí1, F. Jimenez Esteban1-3, A. Bayo4, D. Barrado4,5, E. Solano1,2, and C. Rodrigo1,2

1 Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica, PO Box 78, 28261 Villanueva de la Cañada, Madrid, Spain
 e-mail: helenan@cab.inta-csic.es
2 Spanish Virtual Observatory, Spain
3 Saint Louis University, Madrid Campus, Division of Science and Engineering, Avenida del Valle 34, 28003 Madrid
4 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile
5 Calar Alto Observatory, Centro Astronómico Hispano-Alemán, C/ Jesús Darias Remón 2-2, 04004 Almería, Spain

Received 30 July 2012 / Accepted 10 December 2012

ABSTRACT

• “VO based methodology to cross-match and analyse the data”
• multi-cone search + constraints on pm errors, epochs
• Compilation of multi-λ photometry

TOPCAT, Aladin, VizieR, VOSA
- Identified different moving groups
- Distinguished Chamaeleon I and II as two physical entities - not related to foreground ε Cha and η Cha
Automated rapid follow-up of *Swift* gamma-ray burst alerts at 15 GHz with the AMI Large Array

1 School of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ
2 Astrophysics Group, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE
3 Astronomical Institute Anton Pannekoek, Science Park 904, PO Box 94249, 1090 GE Amsterdam, the Netherlands
4 Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 0HA

Accepted 2012 October 19. Received 2012 October 16; in original form 2012 September 28

- 1st mJy level follow-up of GRBs
- VOEvent and automated follow-up system
- Radio afterglow detected on timescale of days
Scalelength of disc galaxies

Kambiz Fathi,1,2* Mark Allen,3 Thomas Boch,3 Evanthia Hatziminaoglou4 and Reynier F. Peletier5

1Stockholm Observatory, Department of Astronomy, Stockholm University, AlbaNova Center, 106 91 Stockholm, Sweden
2Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, 106 91 Stockholm, Sweden
3Observatoire de Strasbourg, UMR 7550, Strasbourg 67000, France
4European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
5Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, the Netherlands

Accepted 2010 April 7. Received 2010 April 2; in original form 2010 February 18

- **SDSS, LEDA, Skyview, Aladin, Topcat, IDL/GDL, VOSpace + Cluster System at CDS**

- **Filtering SDSS catalogue (low extinction, available z, inclination < 70°)**

- **Cross-matching SDSS with LEDA catalogues to identify hubble classification**
Unprecedented sample - previous samples few 100s

Freeman law of galaxy disks confirmed for large sample out to $z=0.3$
All sky search for bright objects with blue colours and high proper motions

- white dwarfs, hot subdwarfs, runaway stars, or early-type stars in nearby young moving groups.

because:

- WDs are used as spectrophotometric standards
- Early-type stars in young moving groups are fundamental for understanding the evolution of star-forming regions.
- Cross-match Tycho-2 and 2MASS. Constraints $\mu > 50 \text{ mas yr}^{-1}$ and $V_T - K_S < -0.5 \text{ mas}$

- Collected multi-λ photometry \Rightarrow SED, fit models
• 32 objects identified. (27 known, 5 new)

• including hot sub-dwarf Albus 5 - confirmed with public FUSE data
VO enabling science

• part of Astronomer’s everyday tool kit
• being used in innovative ways
• ‘VO’ not well cited, but tools are!
• really is just the beginning...
Learning how

- Workshops and schools
- On-line training materials
- From your colleagues
Coming soon...
Multi-dimensional Data

Radio astronomy, Integral Field Spectroscopy, high energy, polarization, simulation, data mining datasets + ...

Time Domain Astronomy

Time Series, light curves, transient event reports, +...

• Need to ensure that these are accessible and useable within the VO
1. Load MOC-HST MOC-SDSS
2. Compute MOC inters.
3. Query Simbad by MOC

=> Realized in 5s
Observational core metadata

- Special set of parameters (columns) for uniform query across many archives/services/tables

All spectra with $\text{res} > 3000$ between 4000-5000 Å with $t_{\text{exp}} > 300s$
IVOA Newsletter

- Bi-annual
- Aimed at Astronomers
- Applications highlights
- Recent refereed journal papers with significant use of VO

http://www.ivoa.net/newsletter
Links

• IVOA - http://www.ivoa.net
• EuroVO - http://www.euro-vo.org
• EuroVO CoSADIE - http://www.cosadie.eu/twiki/bin/view/CoSADIE/WebHome
• CDS - http://cdsweb.u-strasbg.fr
• Topcat - http://www.star.bris.ac.uk/~mbt/topcat/