
Using TAP to query Gaia gog data

Markus Demleitner, Hendrik Heinl

September 16, 2015

Abstract

In this brief tutorial you will learn to use the table access proto-

col (TAP) and the astronomical fata query language (ADQL) to

access the Gaia gog data. The actual gaia data will be accessed

analogously. As client we will be using TOPCAT. At the end of

the tutorial you should not only know how to access the gaia gog

data, but also have some insides in the usefulness of standards and

the Virtual Observertory in particular. As example for using remote

services we will remotely calculate the mean proper motions of stars

in selected nearby galaxies

CAVE: Though we expect to find stars belonging to nearby galaxies

in the Gaia gog data, this data just is simulated data, so you are not

supposed to do real science on it. But of course you are welcome

to use it to prepare your scripts and data for the real Gaia data

releases.

Software: Topcat Version 4.3, TAP

1 Querying SIMBAD

. 1 Querying SIMBAD – In a first step we will be querying SIMBAD to get the po-

sitions and angular size nearby galaxies. Therefore we start TOPCAT and open

the TAP Query window at VO →TAP. In the field Keywords enter ”SIMBAD”

and click Find Service. From the two results showing up click on ”SIMBAD

TAP”. Then we click Use Service. The new opening window shows on the left

a list of all available tables. Thanks to the ”Find:” feature we don’t need to

scroll down but can directly type ”basic” into this field and then check the table

”public.basic” on which we will run our query. In the query field we write our

ADQL query as following:

1

http://www.star.bris.ac.uk/~mbt/topcat/
http://www.ivoa.net/documents/TAP/


Using TAP to query Gaia gog data

SELECT TOP 20

ra, dec, galdim_majaxis, main_id

FROM public.basic

WHERE otype='G..'
AND galdim_majaxis IS NOT NULL

AND galdim_majaxis <100

ORDER BY galdim_majaxis DESC

As you see this is quite straightforward: in the first line we ask for the first

20 results (due to latency time in tutorials we limit this to 20). Line two shows

the columns that we want in return, which are coordinates, the angular size

of the object and the main indentifier. ”FROM” defines the table we want to

query and after ”WHERE” we define the conditions. From the metadata we

see that ”otypes” is the column in which the calue ”G..” is used for identified

galaxies. As an additional condition we don’t want those galaxies returned that

don’t have an angular size, or those which are too large - the latter is due to

the expected performance loss when querying the Gaia data in a tutorial. The

last line means we want the data to be sorted by descending angular size. Click

Run Query and receive the results as a table.

. 2 Local data – In TOPCATs main window you now find the table with the query

results. Click on Views →Table Data to take a look at the data. We now could

reduce this data by deleting all the galaxies that we don’t need, and for your

research you may find that very usefull, but for the next step we don’t need to

do this.

2 Gaia TAP service

Now we are ready to use our local data to query the Gaia TAP service. We want

to let the TAP service do as much of the process as possible to just download

only the data we are interested in. Therefore we again open the TOPCAT TAP

query Window as we did before, but instead of SIMBAD we now use the TAP

URL: http://mintaka.ari.uni-heidelberg.de/tap/

. 3 Building the query – In the Use Service Tab we chose table gog.gdr001 which

contains the simulated data. By browsing of the Columns Metadata we see that

to calculate the mean proper motion we need the proper motion components

from declination and right ascension directions, which are the columns pmra,

pmdec. From our own data we want main id and finally we want to count the

2

http://mintaka.ari.uni-heidelberg.de/tap/


Using TAP to query Gaia gog data

stars belonging to the galaxy as defined in column main id. We start by pressing

on Examples → Basic → Fulltable

SELECT TOP 1000 * FROM gog.gdr001

This is a good start for the query. But actually we are not interested in all

the data, so we change the query to our needs: We want to calculate the proper

motion from the existing columns pmra and pmdec. This calculation we can do

remotely on the TAP service so we should do so by adding the calculation into

our TAP query as following:

SELECT TOP 25000

AVG(sqrt(pmra*pmra+pmdec*pmdec)) AS pmtot,

COUNT(*) AS ct, main_id

. 4 Upload local data – Now we need to add our local data as well as define the

remote table we want to query. We use the feature of a tap upload to sent our

local data to the TAP service. Here we have to be aware that we set the right

identifier of our local table. In TOPCAT that is the table number, so .t1 would

take the first table in TOPCAT. We also want to benefit from aliases, so we

define the alias of our data as ”mine” and the remote data as ”theirs”. As we

want to merge some of the local data with the remote data we use JOIN ... ON.

So the next lines are:

FROM tap_upload.t1 AS mine

JOIN gog.gdr001 AS theirs ON

. 5 Query Conditions – Now we have to set the conditions of our query. What

we want are stars from the remote service in a cone defined by the coordinates

and the size of the galaxies in arcminutes as we retrieved it from SIMBAD. In

ADQL we do this like this:

(1=CONTAINS(POINT('icrs', theirs.ra, theirs.dec),

CIRCLE('icrs', mine.ra, mine.dec, mine.galdim_majaxis/60)))

Take a minute to understand what’s happening here. As a hint it’s helpful

to know that CONTAINS() returns a boolean as ”1” - true or ”0” - false. Note

how usefull setting the namespace was for this. In a final step we add a grouping

so the counted stars are mapped to main id and we order the data in descending

order of column ct. The final query is:

SELECT

3



Using TAP to query Gaia gog data

AVG(SQRT(pmra*pmra+pmdec*pmdec)) AS pmtot,

COUNT(*) AS ct, main_id

FROM tap_upload.t1 AS mine

JOIN gog.gdr001 AS theirs

ON (1=CONTAINS(POINT('icrs', theirs.ra, theirs.dec),

CIRCLE('icrs', mine.ra, mine.dec, mine.galdim_majaxis/60)))

GROUP BY main_id

ORDER BY ct DESC

Write this into the Query field and click Run Query. Due to the calculation

the result may take some time to return.

4


